
Technical

From phishing to developers: What are the
new attack vectors?

 

Published September 22 2021 · 3 min. read

“Shift Left and Extend Right” is the primary driver for digital transformation, but it is also an attackers’ 
paradise. Developers are getting more and more responsibility and power from design to code to cloud, but 
this has left security gaps unaddressed. Attackers have identified this blind spot and are targeting the 
developers themselves – and their identities. Software supply chain attacks are running rampant: in just one 
example, members of the PHP team identified malicious code commits to their interpreter using legitimate 
developer identities that had been compromised, along with the git.php.net server.

Today’s attackers understand that their level of access will be much greater if they are able to gain 
legitimate access to the source code – and more.

Segregation of Duties has been a fundamental security principle for nearly as long as we’ve had security 
principles. But the lines have become blurred. By breaking down the walls between Dev and Ops, developer 
accounts have gained the ability to do far more – and cause more damage. With modern DevOps practices, 
Developers today have access to far more than just source code.

In order to make changes to production settings only a few years ago, an attacker would target system or 
admin accounts on individual servers. The targets evolved into administrative identities for cloud-based 
services, such as AWS, Azure, and GCP. But with the rise of Infrastructure as Code, there is a new target in 
order to access production settings: Developer accounts. Having said that, the developer account is the 
weakest link between application code and Infrastructure as Code and no one today is looking across 
application and infrastructure risks in one platform.

A single compromised developer account can lead to catastrophic damage in the hands of an attacker – and 
those accounts are often not properly secured. Unlike system admins of old who would follow a strict 
process to manage, access, and audit shared admin accounts and individual sysadmin identities, 
development accounts have very different profiles. Developers:

Are not as well-trained in security
Have other pressing priorities
Will not go through an extensive series of security processes, such as using VPNs and jump servers in 
order to do their job

Software Bills of Materials (SBOM) are important but don’t go nearly far enough. They’re also ineffective 
when it comes to malicious code inserted into existing components.

What Must be Done  
“Securing Development Environments” is in the “Innovation Trigger” stage of Gartner’s Hype Cycle for 
Application Security, 2021.

https://techcrunch.com/2021/07/29/true-shift-left-and-extend-right-security-requires-empowered-developers/
https://apiiro.com/detection-and-prevention-of-malicious-commits-to-the-php-code-repository
https://www.gartner.com/en/documents/4003469


It’s easy to understand why. Securing development environments is not a straightforward task that can be 
performed in a silo and with existing tools. To be effective, it requires deep visibility across people, 
processes, and tools that spans the entire SDLC.

There has been no Privileged Identity/Access Management market specifically for development accounts 
and environments. And that is exactly what is needed. It is essential that organizations apply User and Entity 
Behavior Analytics (UEBA) concepts to developer identities, in order to identify abnormal activities, including 
compromised accounts and malicious insiders. But the UEBA engine must be significantly more contextual 
than simple anomaly detection. Consider the following:

A developer commits code at 5am on a Saturday, which this particular developer has not done before
The commit was made from an unusual location (for that developer)
Back-end code was updated that changes an authorization control on the API gateway using 
Infrastructure as Code
The developer is a front-end web developer

In order to have a full picture of the risk, it is necessary to understand the person involved, his/her peer 
group of contributors, the code itself (including the context, logic, and functionality), and analyze spatio-
temporal behavioral information, including complex relationships between developers and other 
contributors in the organisation. We need to “connect the dots” in a way that gives us an accurate 
assessment of the risk.

“Generic” UEBA is Not Enough  
In the PHP attack, there were clear indicators of abnormal activity, including:

The commit did not match the contributor’s recent activity in regards to the intensity of commits
The commit time deviated from the expected activity day and time of the user
The contributor deviated from the patterns common by his peers in the repository
A major discrepancy between commit’s information and analyzed code
The added code was significantly different than predicted by the model for this repository

https://apiiro.com/detection-and-prevention-of-malicious-commits-to-the-php-code-repository


The key takeaway is that generic UEBA algorithms and tools would never have been able to detect 
this abnormality. Truly recognizing the discrepancies requires a deep understanding of the application, 
repositories, code, and the developers’ activity patterns.

Developer accounts are a critical new attack vector, but with a comprehensive approach to developer 
security that spans from design to code to cloud, we also have the tools to fight back.


	From phishing to developers: What are the new attack vectors?
	What Must be Done
	“Generic” UEBA is Not Enough


