
CI/CD Pipeline Security Best Practices
Continuous integration and continuous delivery (CI/CD) have become the backbone of modern software
development, enabling rapid, reliable, and consistent delivery of software products. To bolster your CI/CD
pipeline, ensuring resilience against ever-evolving threats, follow the best practices in this guide.

 Nicolas Ehrman November 1, 2023 9 minutes read

CI/CD security: A refresher
Continuous integration and continuous delivery (CI/CD) have become the backbone of modern
software development, enabling rapid, reliable, and consistent delivery of software products. And
with the increasing reliance on CI/CD pipelines, securing them has become non-negotiable. A compromised
pipeline can lead to the deployment of vulnerable applications, causing significant damage to organizations
and their users.

The refresher section below provides a solid foundation for understanding CI/CD, with overviews of the key
components at risk, the shared responsibility model, and the challenges faced in CI/CD security.

Components at risk

In a CI/CD pipeline, several components are susceptible to attacks, including:

Source-code repositories: Where the application code is stored and managed
Build servers and workers: Where the code is compiled into executable artifacts
Artifact repositories: Where the build artifacts are stored for deployment
Deployment environments: Where the application is deployed and runs

https://www.wiz.io/authors/nicolas-ehrman?utm_source=chatgpt.com

Each of these components requires specific security measures to prevent unauthorized access and
tampering.

The shared responsibility model

The shared responsibility model is a foundational security framework in cloud computing. It delineates
the security responsibilities between cloud service providers and the users of those services. In the context
of CI/CD, this model says that while providers are tasked with ensuring the security of the underlying
infrastructure and services, the onus is on the users (particularly the development teams) to secure their
code, configurations, and data. This division of responsibility ensures that both parties play their part in
safeguarding the entire ecosystem. Adhering to this model is crucial for maintaining the integrity and
security of the CI/CD pipeline.

Challenges in CI/CD security

Securing CI/CD pipelines has formidable challenges, including:

Complexity: The diverse and interconnected components of CI/CD pipelines make them complex to
secure.
Speed: The rapid pace of CI/CD can sometimes outstrip security controls, leading to vulnerabilities.
Automation: While automation is a strength of CI/CD, it can also be a weakness if security checks are
not automated as well.
Access control: Managing access to various pipeline components can prove difficult, especially when
granting access to large teams.
Secrets sprawl: It's not uncommon for CI/CD solutions to house a plethora of secrets. Combined with
subpar access controls, this can often pave the way for secrets leakages.
Supply-chain security with SaaS CI/CD tools: Leveraging software-as-a-service (SaaS) CI/CD tools like
GitLab and CircleCI can introduce supply-chain security concerns. Dependence on third-party tools and
services might expose organizations to risks if these tools are compromised or suffer from
vulnerabilities.

Best practices and recommendations
A report from Cybersecurity Ventures predicts that the cost of cybercrime will soar to $10.5 trillion annually
by 2025. This alarming statistic underscores the urgent need for secured CI/CD pipelines. As we delve
deeper CI/CD pipelines, we must bear this statistic in mind, understanding its broader implications.

To bolster your CI/CD pipeline, ensuring resilience against ever-evolving threats, follow these best practices:

Automate security scans

Given the complexity of modern software, relying solely on manual security checks is impractical.
Automated security scans are indispensable for real-time vulnerability detection, especially with the advent
of DevSecOps, which integrates security into the development lifecycle. Automated security scans facilitate
continuous security assessments, immediate vulnerability detection, and developer notifications, mitigating
the risk of deploying compromised code.

https://www.wiz.io/academy/software-supply-chain-security#threats-and-risks-to-the-software-supply-chain-8
https://www.oxfordcorp.com/en-us/insights/blog/cybercrime-is-evolving-so-cybersecurity-needs-to-evolve-too
https://www.wiz.io/academy/what-is-devsecops?utm_source=chatgpt.com

Action items

Integrate security tools: Embed tools like SonarQube or Checkmarx into your CI/CD pipeline. These
tools can perform static and dynamic analysis on the application code, identifying vulnerabilities like
SQL injection, cross-site scripting (XSS), and insecure object references.

Schedule regular scans: Configure your CI/CD pipeline to trigger security scans after every code
commit, utilizing webhook integrations or polling SCM, ensuring real-time vulnerability assessments.
Notify developers: To facilitate immediate remediation, leverage notification channels such as email,
Slack, or Microsoft Teams to alert developers about possible vulnerabilities instantly.

Manage secrets effectively

Exposing secrets through hardcoding or improper management can lead to severe security breaches,
including unauthorized data access and system compromises. Effective secrets management such as API
keys, passwords, and tokens prevents unauthorized access and enhances overall application security.

Action items

Use secrets management tools: Tools like HashiCorp Vault or AWS Secrets Manager provide features
including dynamic secrets, secret revocation, and detailed audit logs. Implementing these tools
effectively can significantly enhance the security posture of an organization by keeping sensitive data
protected and access controlled.

Example of SonarQube integration in a Jenkins pipeline

pipeline {

 agent any
 stages {
 stage('SonarQube Analysis') {
 steps {
 script {
 def scannerHome = tool 'SonarQube Scanner';
 withSonarQubeEnv('My SonarQube Server') {
 sh "${scannerHome}/bin/sonar-scanner"
 }
 }
 }
 }
 }
}

Figure 1: Vault dashboard (Source: Vault)

Regularly rotate secrets and keys: By implementing automated rotation policies for secrets and keys
using APIs and SDKs provided by secrets management tools, you can reduce the window of
opportunity for malicious actors.
Avoid hardcoding secrets: Use pre-commit hooks and secret-scanning tools to enforce coding
standards and perform code reviews to prevent hardcoding of secrets in the codebase.

Immutable infrastructure

Mutable infrastructures are susceptible to inconsistencies and vulnerabilities due to post-deployment
alterations. Immutable infrastructure, on the other hand, promotes consistency, reduces attack vectors, and
simplifies rollback mechanisms.

Action items

Use containerization tools: Utilize tools such as Docker for containerization and platforms like
Kubernetes for orchestration to achieve uniform and unchangeable deployments across different
environments.

Implement infrastructure as code (IaC): To ensure environmental consistency and immutability,
leverage IaC tools like Terraform or AWS CloudFormation to define, version, and provision

Example Dockerfile for a Node.js application

FROM node:14

WORKDIR /app

COPY package*.json ./

RUN npm install

COPY . .

EXPOSE 8080

CMD ["node", "app.js"]

https://www.hashicorp.com/resources/vault-oss-ui-introduction
https://www.wiz.io/academy/secret-scanning#open-source-secret-scanning-tools-47

infrastructure.

Ensure rollbacks re-create the entire environment: Design rollback strategies to re-create the
entire environment from IaC definitions in order to return your environment to a known, secure state.

Regularly update and patch

Utilizing outdated software components exposes systems to known vulnerabilities, which attackers can
exploit to compromise CI/CD pipelines and deployed applications. Regular updates and patches secure the
CI/CD pipeline against known vulnerabilities by installing the latest features and security enhancements.

Action items

Set up automated update checks: Subscribe to vulnerability databases like NVD, and implement
automated update checks for all components, taking advantage of package managers like npm, pip,
and apt-get.

Example Terraform script to create an AWS S3 bucket with versioning enabled

resource "aws_s3_bucket" "my_bucket" {

 bucket = "my-tf-test-bucket"
 acl = "private"
 versioning {
 enabled = true
 }

}

Figure 2: National Vulnerability Database

Implement a patch-management strategy: A comprehensive patch-management strategy
incorporates risk assessment, testing, and phased deployment to prevent introducing new issues.
Regularly review and apply security advisories: Subscribe to security advisories from software
vendors and open-source communities, and promptly apply recommended patches and updates.

Role-based access control (RBAC)

Implementing RBAC is an essential means of assigning access based on user roles, which minimizes
the risk of accidental or malicious changes and limits the potential damage from compromised accounts.
RBAC implementation secures the CI/CD pipeline by granting users the minimum necessary access to
perform their duties, reducing the chances of unauthorized access and modifications.

Action items

Define clear roles and responsibilities: Define and document roles and responsibilities within your
organization, assigning permissions based on the principle of least privilege.
Implement RBAC in CI/CD tools and environments: Configure RBAC settings in CI/CD tools like
Jenkins, GitLab, and Kubernetes, leveraging built-in RBAC mechanisms and plugins.

Regularly review and update roles and permissions: Take advantage of auditing tools and logs to
conduct regular audits and reviews of roles and permissions, checking to make sure access is granted
on a need-to-know basis and that there aren’t any discrepancies.

Monitor and alert

Implementing comprehensive monitoring and alerting mechanisms enhances the visibility of the CI/CD
pipeline's health and security, enabling immediate detection of and response to any anomalies or
security incidents. Such proactive measures help teams swiftly address potential threats, minimizing
risks and potential downtimes.

Action items

Integrate monitoring tools: Incorporate advanced monitoring tools like Splunk or the ELK Stack into
your CI/CD pipeline. These tools provide real-time insights, log analytics, and generate visualizations to
help you identify suspicious activities.

Example of defining roles and permissions in Kubernetes RBAC

kind: Role

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 namespace: database

 name: pod-viewer

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list"]

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: read-pods

 namespace: default

subjects:

kind: User

name: "db-admin"

apiGroup: rbac.authorization.k8s.io

roleRef:

kind: Role

name: pod-viewer

apiGroup: rbac.authorization.k8s.io

Figure 3: Jenkins KPIs in a Kibana dashboard (Source: ELK Guide)

Set up real-time alerts: Configure your monitoring tools to send real-time alerts for suspicious
activities or anomalies. Define alerting thresholds and double-check that the relevant team members
are notified immediately.

Regularly review monitoring dashboards and update alerting thresholds: Periodically review
monitoring dashboards to ensure that they reflect the current state of your CI/CD pipeline. Adjust
alerting thresholds as needed to avoid false positives and facilitate the timely detection of issues.

Going beyond the basics
CI/CD security is a necessity for organizations who want to build and deploy reliable and secure
applications. The strategies and best practices outlined above lay a strong foundation for securing CI/CD
pipelines. However, achieving a scalable and robust pipeline is a continuous process that requires you to go
beyond the basics.

Alert manager rule to check the connection status of Jenkins instances. Offline

instances can be hijacked or used for malicious software.

- alert: JenkinsNodeOffline

 expr: jenkins_node_offline_value > 1
 for: 0m
 labels:
 severity: critical
 annotations:
 summary: Jenkins node offline (instance {{ $labels.instance }})
 description: "Jenkins node offline: `{{$labels.instance}}` in
{{$labels.realm}}/{{$labels.env}} ({{$labels.region}})\n VALUE = {{ $value }}\n LABELS =

{{ $labels }}"

https://www.elastic.co/guide/en/observability/current/ci-cd-observability.html

Immediate recommendations

Educate and train teams: Regularly educate and train development and operations teams on security
best practices and emerging threats.
Conduct security audits: Regularly schedule security assessments for your CI/CD pipeline to detect
and address potential vulnerabilities or configuration errors.
Stay informed: Read up on the latest security trends, vulnerabilities, and patches to keep your CI/CD
pipeline secure.

Wiz's approach to CI/CD Security
Wiz Code enhances CI/CD security by embedding security checks directly into the development pipeline,
ensuring vulnerabilities are caught early and continuously throughout the software lifecycle.

Seamless CI/CD Integration: Wiz Code integrates with popular CI/CD platforms like Jenkins, GitLab,
and CircleCI, ensuring security scans run automatically at every stage of the CI/CD pipeline. This allows
developers to identify and address issues, such as misconfigurations and vulnerabilities, before the
code reaches production.
Shift-Left Approach: Wiz Code promotes a shift-left security model by embedding security checks
early in the development process. Developers receive instant feedback on security risks in their
Infrastructure as Code (IaC) templates and dependencies, preventing the introduction of vulnerabilities
before they become embedded in later stages of development.
Automated IaC Security Scans: Wiz Code automatically scans IaC files like Terraform and
CloudFormation within the CI/CD pipeline, detecting potential security risks such as misconfigurations
or exposed secrets. These scans ensure that infrastructure remains secure as code changes are
continuously made.
Continuous Monitoring and Feedback: Wiz Code delivers real-time, continuous feedback on security
risks, enabling teams to take action on vulnerabilities throughout the CI/CD process. This reduces the
risk of shipping insecure code or configurations by addressing risks proactively.
Policy Enforcement: It enforces predefined security policies within the CI/CD pipeline, ensuring that all
code meets an organization’s security standards before moving to production. This consistent policy
enforcement minimizes the risk of human error and misconfigurations.

In this article, we've talked about various tools, each focusing on a different part of the wide-ranging
landscape of DevOps security. Schedule a Wiz demo, and learn about our advanced features like container
and Kubernetes security and IaC scanning on an easy-to-use, unified platform.

https://www.wiz.io/platform/wiz-code?utm_source=chatgpt.com
https://www.wiz.io/demo?utm_source=chatgpt.com

	CI/CD Pipeline Security Best Practices
	CI/CD security: A refresher
	Components at risk
	The shared responsibility model
	Challenges in CI/CD security

	Best practices and recommendations
	Automate security scans
	Manage secrets effectively
	Immutable infrastructure
	Regularly update and patch
	Role-based access control (RBAC)
	Monitor and alert

	Going beyond the basics
	Immediate recommendations

	Wiz's approach to CI/CD Security

