
April 2022

Cloud Native Threat Report

Tracking Software 
Supply Chain and 
Kubernetes Attacks



22022 Cloud Native Threat Report

Introduction
Key findings
Methodology

Observed attacks on cloud native 
environments
Adversaries adopt more sophisticated tactics, techniques, and 
procedures
Attention shifts from Docker to Kubernetes
Traditional attack tactics are targeting cloud environments
Software supply-chain exploitation continues to surge
Christmas comes early for attackers, thanks to Log4j
TeamTNT stays prolific, introduces new techniques, then 
retires. Or did they?

Conclusions

3
3
4

5

5

6
9

10
13
16

21

Table of Contents

https://www.aquasec.com/research/


32022 Cloud Native Threat Report

Introduction
Developing defenses against cyber threats that target cloud native environments requires 
staying up to date on attack vectors and the tactics, techniques, and procedures that 
attackers use. Aqua Security’s Team Nautilus focuses on uncovering new threats and 
attacks that target the cloud native stack. By researching cloud threats, we aspire to 
enable new methods and tools to address them.

This report presents observations and discoveries made throughout 2021, based on actual 
attacks in the wild. It highlights the newest trends and takeaways for practitioners in the 
cloud native threat landscape.

Key findings

1	 Attacks are becoming even more sophisticated, with threat actors’ tactics, 
	 techniques, and procedures advancing at a rapid rate. In 2021, backdoors were 

	 encountered in 54% of attacks, an increase of 9 percentage points compared with in 
	 2020. The usage of worms rose by 10 percentage points to 51% of attacks, 
	 compared with 41% the previous year. We also observed more sophisticated activity 
	 involving rootkits, fileless execution, and loading kernel modules.

2 	 Adversaries shifted their attention from Docker to Kubernetes and the CI/CD 
	 pipeline. Threat actors broadened their targets to include CI/CD environments  

	 and vulnerable Kubernetes deployments and applications. The proportion and 
	 variety of observed attacks targeting Kubernetes has increased. Based on the 
	 attacks that we observed, the number of malicious images with potential to target 
	 Kubernetes environments increased by 10 percentage points, from 9% in 2020 to a 
	 full 19% in 2021.

3	 Supply-chain attacks represent 14.3% of the sample of images from public image 
	 libraries*. Supply-chain attacks continue to be an effective method of attacking 

	 cloud native environments. An analysis of over 1,100 container images uploaded to 
	 one of the world’s largest image communities and libraries in the past year revealed 
	 that 13% were related to potentially unwanted applications, such as cryptominers, 
	 and 1.3% were related to malware.

*Note that this sample is not a statistically significant sample size of all public image libraries.

https://www.aquasec.com/research/


42022 Cloud Native Threat Report

4	 The Log4j zero-day vulnerability was immediately exploited in the wild.  
	 The popular logging library is estimated to be present in over 100 million instances 

	 globally. After we set up a honeypot, some of the largest botnets—including Muhstik 
	 and Mirai—began targeting it within minutes. We detected multiple malicious 
	 techniques, including known malware, fileless execution, files that were downloaded 
	 and executed from memory, and reverse shell executions.

5	 TeamTNT, the most prolific threat actor targeting cloud native environments, 
	 appears to retire—but maybe not. TeamTNT announced its retirement in December 

	 2021 but was still actively attacking our honeypots a month later. However, no 
	 new tactics have been in use. That makes it unclear if the ongoing attacks originated 
	 from automated attack infrastructure that was left operating or if TeamTNT faked 
	 their retirement and are continuing to actively conduct attacks. It appears as if 
	 some of the command-and-control servers, a third-party registry, and a worm are 
	 still operational and infecting new targets.

Methodology
To investigate attacks in the wild, Team Nautilus makes extensive use of honeypots that 
lure attackers and trick them into conducting their activities in an environment that’s 
controlled and monitored by researchers. This approach allows us to collect indicators of 
compromise, including malicious files, malicious network communication, indications of 
container escape, malware, cryptominer activity, code injection, and backdoors.

To investigate supply-chain attacks against cloud native applications, we examine 
images from public registries and repositories, such as NPM and Python Package Index. 
Observations are augmented with data from Shodan, the search engine for internet-
connected devices. That data extends our visibility into attacks beyond those that we 
observed in honeypot and sandbox environments.

To analyze attacks, we use Aqua’s Dynamic Threat Analysis (DTA) tool. Aqua DTA is 
powered by our open source project Tracee, which enables users to perform runtime 
security and forensics in a Linux environment using eBPF. 

Aqua DTA is the industry’s first container sandbox solution that dynamically assesses 
the behavior of container images to determine whether running an image would pose 
any threat to the organization. It runs the container image in a safe and isolated sandbox 
environment that monitors its behavior and network communications. Aqua DTA uses 
eBPF technology to monitor the container’s behavior, detecting malicious and suspicious 
activity based on patterns and indicators that we’ve identified. 

https://www.aquasec.com/research/


52022 Cloud Native Threat Report

Observed attacks on 
cloud native environments
Adversaries adopt more sophisticated tactics, 
techniques, and procedures 
As in years past, in a large majority of attacks, we encountered cryptocurrency mining 
software—most frequently XMRig.

However, while cryptominers were the most common malware that we observed, they 
weren’t the only thing we found. With increasing frequency, we discovered backdoors, 
rootkits, and credential stealers—signs that intruders have more than cryptomining in their 
plans.

We encountered backdoors in roughly 54% of incidents in 2021, a 9 percentage point 
increase from 45% in 2020. Backdoors permit a threat actor to access a system remotely 
and are used to establish persistence in the compromised environment.

We also observed an increase in the use of worms in malicious container images. Just 
over 50% of all analyzed images contained worms in 2021, an increase of 10 percentage 
points from 41% in 2020. Worms automatically seek vulnerable systems in a network and 
infect them, without the need for manual intervention by the threat actor. Worms allow 
attackers to increase the scope of their attack with minimal effort.

Growth in backdoors and worms in 2021

Backdoors Worms

45%
41%

54%
50%

Growth in backdoors and worms in 2021

Backdoors Worms

45%
41%

54%
50%

https://www.aquasec.com/research/


62022 Cloud Native Threat Report

Rootkits1 provide attackers with privileged access to a system while hiding their presence. 
There are two main types of rootkits: user space rootkits and kernel space rootkits. The 
former operate in a user space, where they intercept and modify calls made by binaries to 
libraries. The latter are more dangerous because they provide the broadest user privileges 
and can control all system processes.

In cloud native environments, attackers can execute rootkits on the host to hide 
malicious processes and to reduce the chances of detection after they’ve escaped from 
the containerized environment. For example, rootkits allow attackers to conceal high 
CPU utilization, which decreases the chances of being detected while they engage in 
cryptomining.

Attention shifts from Docker to Kubernetes
In past years, misconfigured Docker APIs were a favorite target of threat actors. To find 
vulnerable targets, attackers used public search engines, such as Shodan or Censys, or 
scanning tools such as Masscan. In practice, these techniques are very effective. The 
median time it takes for a threat actor to detect an exposed misconfigured Docker API is 
only 56 minutes2.  

These facts underscore the reality that the slightest misconfiguration, even for a 
brief moment, exposes containers to a threat of cyberattack. In 2021, threat actors 
continued to target misconfigured Docker APIs, even though a slight decrease in activity 
was observed. In their place, attackers broadened their targets to include CI/CD and 
Kubernetes environments.

Malicious images targeting Kubernetes environments

9%

19%

Malicious images targeting Kubernetes environments

9%

19%

In particular, we saw a 
concerted increase in the 
targeting of Kubernetes 
environments. In 2021, 19% 
of the malicious container 
images that we analyzed 
targeted Kubernetes, 
including kubelets and API 
servers, up from 9% the 
previous year. 

1See https://attack.mitre.org/techniques/T1014/
2Aqua’s Team Nautilus, Attacks in the Wild on Container Infrastructure

https://www.aquasec.com/research/
https://attack.mitre.org/techniques/T1014/
https://info.aquasec.com/cloud-native-threats-aqua


72022 Cloud Native Threat Report

This behavior makes sense, considering that the attackers are always searching for 
low-hanging fruit and that the attack surface of a Kubernetes cluster is broad. Once 
an attacker gains initial access, there are more possibilities for lateral movement and 
persistence, compared with a single container.

Weaponizing Kubernetes UI tools

In September 2020, we first learned that attackers were using UI tools to get access to 
Docker and Kubernetes environments3.  In 2021, we observed a much wider adoption of 
this approach.

Many applications can be considered Kubernetes UI tools. Some of them, such as 
cAdvisor and Kubernetes Operational View, only provide visibility into the cluster. Others, 
such as Weave Scope, Kubernetes Dashboard, and Octant, also enable access and 
control. When exploited by an attacker, the latter set can lead to significant harm.

Much like how a misconfigured Docker API creates an entry point for attackers, so 
too does a misconfiguration that exposes a Kubernetes UI tool. To find these exposed 
tools, attackers simply adapted the techniques that were so successful at discovering 
vulnerable Docker instances.

For example, we used Shodan to discover Kubernetes Dashboards that were 
misconfigured so that they didn’t require user authentication, which leaves the 
environment exposed to exploitation. An attacker who connects to such an environment 
gains full visibility (Figure 3), considerable control (Figure 4), and access to secrets 
(Figure 5).

Figure 3— 
An attacker 
connecting to 
an exposed 
Kubernetes 
Dashboard 
gains full 
visibility into 
the Kubernetes 
environment.

3See Preventing malicious use of Weave Scope [Weaveworks]

https://www.aquasec.com/research/
https://www.weave.works/blog/preventing-malicious-use-of-weave-scope


82022 Cloud Native Threat Report

Figure 4—The attacker can open a shell connection to a running pod and can 
start containers and change deployments.

Figure 5—The attacker can also easily access secrets. Moreover, there are 
many other ways for an attacker to cause damage, such as changing settings 
and obtaining Kubernetes volumes.

https://www.aquasec.com/research/


92022 Cloud Native Threat Report

Moreover, there are many other ways for an attacker to cause damage, such as changing 
settings and obtaining Kubernetes volumes.

Hardening and correct configuration of cloud services can significantly reduce the 
potential attack surface and prevent attacks that target misconfigured Kubernetes UI 
tools. To protect yourself from threats like this, it’s important to follow Kubernetes security 
best practices.

If you’re already using Kubernetes UI tools, we recommend ensuring they are not  
publicly accessible. 

Aqua’s experts have written several guides on Kubernetes security 
and hardening, including:

Traditional attack tactics are 
targeting cloud environments
 
Tactics such as password cracking and exploiting vulnerabilities in applications such as 
databases, servers, Nginx, and Kibana are nothing new. However, in 2021, we observed 
some attacks that were aimed at stealing cloud metadata. The implication of this activity 
is that attackers are using more techniques that are specifically reserved for applications 
running in cloud environments. 

This suggests that the large botnets, such as Mirai, Muhstik, and Kinsing, have evolved. 
And while they might not explicitly target cloud native environments—like TeamTNT 
does, for example—they might know how to pivot and take advantage of cloud native 
opportunities that present themselves.

Blog

Top 10 Kubernetes 
Application Security 
Hardening Techniques ›

Whitepaper

A Closer Look Into  
the NSA Kubernetes 
Hardening Guide ›

Blog

Protecting 
Kubernetes Secrets: 
A Practical Guide ›

https://www.aquasec.com/research/
https://blog.aquasec.com/kubernetes-hardening-techniques
https://blog.aquasec.com/kubernetes-hardening-techniques
https://blog.aquasec.com/kubernetes-hardening-techniques
https://blog.aquasec.com/kubernetes-hardening-techniques
https://blog.aquasec.com/nsa-kubernetes-hardening-guide
https://blog.aquasec.com/nsa-kubernetes-hardening-guide
https://blog.aquasec.com/nsa-kubernetes-hardening-guide
https://blog.aquasec.com/nsa-kubernetes-hardening-guide
https://blog.aquasec.com/managing-kubernetes-secrets
https://blog.aquasec.com/managing-kubernetes-secrets
https://blog.aquasec.com/managing-kubernetes-secrets
https://blog.aquasec.com/managing-kubernetes-secrets


102022 Cloud Native Threat Report

Software supply-chain 
exploitation continues to surge
Modern development pipelines are complex, automated environments, with a wide variety 
of CI/CD tools used to build applications. On top of that, developers commonly repurpose 
open source code, and each software project might rely on dozens or even hundreds 
of open source dependencies. Consequently, successful attacks allow adversaries to 
compromise many environments and achieve widespread distribution of malicious code.

These factors make the software supply chain a prime target for attacks, and 2021 saw a 
surge in such incidents. We estimate that software supply-chain attacks grew by at least 
300% year over year4.

In 2021, threat actors aiming to breach a software supplier and conduct a successful 
attack through the development pipeline focused their efforts on:

	• Exploiting open source vulnerabilities

	• Poisoning widely used open source packages

	• Compromising CI/CD tools and code integrity

	• Manipulating the build process

In most instances, security risks in the software supply chain manifest themselves only 
in runtime, when containers execute actions and network communications occur. That’s 
because malware and other supply-chain risks aren’t vulnerabilities—although the 
artifacts taken in through the supply chain may very well include vulnerabilities.

4 2021 Software Supply Chain Security Report
5 See JDWP Misconfiguration in Container Images and K8s [Aqua Security]
6 See https://attack.mitre.org/software/S0002/
7 Earlier investigations revealed that this account was used to attack Kubernetes clusters; for more information, see Threat Alert: Market-First 
Container Image Built to Attack Kubernetes Clusters [Aqua Security]
8 For detailed analysis of this attack, see Threat Alert: Monero Miners Target Cloud Native Dev Environments [Aqua Security]
9 For details, see Dependency Confusion: How I Hacked Into Apple, Microsoft and Dozens of Other Companies [Medium]

https://www.aquasec.com/research/
https://info.aquasec.com/argon-supply-chain-attacks-study?hsCtaTracking=746ab2f5-8dc4-41ce-aa9d-05ae0d036dbd%7Ce08d0f08-2ed5-471d-8fc8-eb5766b691da
https://blog.aquasec.com/jdwp-misconfiguration-container-images
https://attack.mitre.org/software/S0002/
https://blog.aquasec.com/kubernetes-vulnerability-security-threat
https://blog.aquasec.com/kubernetes-vulnerability-security-threat
https://blog.aquasec.com/monero-miners-target-bitbucket-dockerhub
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610


112022 Cloud Native Threat Report

Malicious images in popular public libraries 

We examined more than 1,100 container images that were uploaded to one of the world’s 
largest image libraries in the last 12 months. The analysis revealed that 13% of those 
images were related to potentially unwanted applications, such as cryptominers, and 1.3% 
were related to malware.

	• Many images related to cryptomining. While some used a name that was indicative 
of their purpose, the majority used names that gave no hint as to the image’s 
nature—suggesting that the functionality is intended to be hidden.

	• Forty-four container images belonging to distinct accounts were found to contain a 
Java Debug Wire Protocol (JDWP) misconfiguration that could allow attackers to run 
arbitrary code—for example, to achieve initial access or escalate privileges—in a 
production environment5. 

	• Forty-eight container images were found to contain offensive security tools, such as 
Metasploit and Mimikatz6. These containers might serve legitimate researchers or 
threat actors.

	• Twenty-six container images included malicious binaries, and because 24 of those 
containers used benign names, it’s likely that they’re intended as malware.

	• Eight container images were found to include functionality to perform a DNS 
exfiltration attack, in which the DNS protocol is used to exchange data between two 
computers without a direct connection.

	• Twenty-one repositories from four accounts were associated with TeamTNT. Those 
accounts are portaienr7 (eight repositories), fuhou (seven), lifengyi1323 (five), and 
700888880a0 (one).  “Portaienr” is typo-squatting on the legitimate “portainer” 
image, which is a Docker UI that helps visualize containers, images, volumes, and 
networks.

Our investigation also revealed a number of attacks related to development environments, 
which tend to have comparatively fewer security controls. Among the images scanned, 
128 included cryptomining capabilities8. Again, the container names gave no indication 
about their true nature.

Python packages

In February 2021, researcher Alex Birsan demonstrated a novel supply-chain attack 
that executed counterfeit code on networks belonging to some of the world’s most 
valuable and technologically advanced companies9. Termed a “dependency confusion” 
or “namespace confusion” attack, this approach starts by placing malicious code in an 
official public repository, under the same package name as popular dependencies. 

https://www.aquasec.com/research/


122022 Cloud Native Threat Report

In Birsan’s demonstration, he included code to perform DNS exfiltration. “Knowing that 
most of the possible targets would be deep inside well-protected corporate networks,” he 
said, “I considered that DNS exfiltration was the way to go.” 
By giving his malicious packages version numbers that were higher than the authentic 
ones, Birsan tricked build processes into automatically downloading and incorporating the 
malicious dependency.

Within only two days of Birsan publishing his results, other researchers had put 150 similar 
packages into NPM alone—clearly indicating significant interest in this attack vector.
We scanned more than 30,000 Python packages and identified more than 170 that 
included suspicious or malicious functionality:

	• One package contained offensive security tools.

	• Two packages contained the Microsoft Server Message Block (SMB) vulnerability 
Win.Exploit.CVE_2015_0005-1.

	• One hundred sixty-nine packages included functionality to perform DNS exfiltration, 
with seven distinct destinations. It’s reasonable to conclude that most of these 
packages are used by security researchers to explore and build on Birsan’s 
discoveries.

Figure 6—This script 
includes a DNS 
call in the get_host 
function. The data 
variable contains 
a dictionary that 
collects data about 
the IP, the OS, and 
the path.

https://www.aquasec.com/research/


132022 Cloud Native Threat Report

Figure 7—In only a few weeks, Log4j went from just another 
tool embedded in web applications to a major attack vector.

Christmas comes early for attackers, thanks to Log4j
Until December 2021, Log4j was simply a popular Java logging framework, one of the 
numerous components that run in the background of many modern web applications. But 
everything changed when a zero-day vulnerability (CVE-2021-44228) was published, and 
attackers got to work. 

Additional vulnerabilities soon followed (Figure 7), raising the stakes even further.
The risks were compounded by the huge diversity of vulnerable systems. Log4j is 
often used as part of other software or is bundled with black-box appliances, so many 
organizations were left wondering if they were vulnerable, without a simple way to know 
for sure.

CVE-2021-44832 
Arbitrary code execution vulnerability  
Affected versions: 2.0-beta7 to 2.17.0 
(excluding 2.3.2 and 2.12.4.)  
Fixed in Log4j 2.17.1 

CVSS score: 6.6 (medium)

CVE-2021-45105  
Denial of service (DoS) vulnerability   
Affected versions: 2.0 to 2.16.0 
(excluding 2.12.3 and 2.3.1) 
Fixed in Log4j 2.17.0

CVSS score: 5.9 (medium)

December 9

December 14 December 28

 
CVE-2021-44228 (Log4Shell)
Zero-day RCE vulnerability 
Affected versions: 2.0-beta9 to 2.14.1  
Fixed in Log4j 2.15.0

CVE-2021-45046
Incomplete fix in Log4j 2.15.0 - allows RCE 
Affected versions: 2.0.0 to 2.15.0 
Fixed in Log4j 2.16.0

 
CVE-2021-4104
Untrusted deserialization flaw   
Affected versions: 1.2 
Fix requires upgrading to Log4j 2

December 18

CVSS score: 7.5 (high)CVSS score: 10 (critical)

CVSS score: 9.0 (critical)   

Timeline of the key Log4j events

CVE-2021-44832 
Arbitrary code execution vulnerability  
Affected versions: 2.0-beta7 to 2.17.0 
(excluding 2.3.2 and 2.12.4.)  
Fixed in Log4j 2.17.1 

CVSS score: 6.6 (medium)

CVE-2021-45105  
Denial of service (DoS) vulnerability   
Affected versions: 2.0 to 2.16.0 
(excluding 2.12.3 and 2.3.1) 
Fixed in Log4j 2.17.0

CVSS score: 5.9 (medium)

December 9

December 14 December 28

 
CVE-2021-44228 (Log4Shell)
Zero-day RCE vulnerability 
Affected versions: 2.0-beta9 to 2.14.1  
Fixed in Log4j 2.15.0

CVE-2021-45046
Incomplete fix in Log4j 2.15.0 - allows RCE 
Affected versions: 2.0.0 to 2.15.0 
Fixed in Log4j 2.16.0

 
CVE-2021-4104
Untrusted deserialization flaw   
Affected versions: 1.2 
Fix requires upgrading to Log4j 2

December 18

CVSS score: 7.5 (high)CVSS score: 10 (critical)

CVSS score: 9.0 (critical)   

Timeline of the key Log4j events

https://www.aquasec.com/research/


142022 Cloud Native Threat Report

Figure 8—Aqua’s Cloud Native Detection and Response (CNDR) observes 
the Muhstik malware is executed from memory.

To better understand adversary activities, we created a honeypot vulnerable to CVE-
2021-44228. Within only a few hours, we detected dozens of attacks (Figure 8). Some of 
the attacks were distinct and attacked the environment only once or twice, while others 
targeted it every few minutes, indicating activity by large botnets10.

16%

17%

67%

16%

17%

67%

10 For more details, see Threat Alert: Tracking Real-World Apache Log4j Attacks [Aqua Security]

https://www.aquasec.com/research/
https://blog.aquasec.com/real-world-log4j-attacks-analysis


152022 Cloud Native Threat Report

Figure 9—Aqua’s researchers directly observed a range of attack techniques. 
Notably, we observed that ELF pty3, the Muhstik malware, was written straight 
into memory and executed (Figure 8).

In the honeypot, we observed multiple malicious techniques to exploit our environment, 
including known malware, fileless execution, files that were downloaded from a remote 
resource and executed straight from memory, and reverse shell executions.

https://www.aquasec.com/research/


162022 Cloud Native Threat Report

TeamTNT stays prolific, introduces new techniques, 
then retires. Or did they?
Due to the nature of the cybercrime ecosystem, today’s leading-edge attack is tomorrow’s 
common threat. Therefore, studying the most successful threat actors is an effective way 
to understand the tactics, techniques, and procedures that will soon make their way into 
the mainstream.

Unfortunately, attribution in cybersecurity is notoriously difficult. And it’s made more 
complicated by the dissemination—through partnerships, marketplaces, and theft—of 
different tools. Nevertheless, it becomes relatively straightforward when the attacker 
broadcasts their activities and signs their name on their attacks, as is the case with 
TeamTNT (Figure 10)11. 

Figure 10—TeamTNT isn’t known for their subtlety.

The ‘big bad’

A major player since at least 2019—though they had a brief period of activity earlier than 
that—TeamTNT is well-known to cloud and containercybersecurity researchers12.  In fact, 
the group is so prolific that it’s plausible they are responsible for the majority of attacks 
against cloud and containerized environments.

Their relative success is due to a combination of factors, including continued 
experimentation with new attack vectors and a willingness both to write their own attacks 
and to leverage existing offensive security tools and third-party repositories.

11 See https://attack.mitre.org/groups/G0139/

https://www.aquasec.com/research/
https://attack.mitre.org/groups/G0139/


172022 Cloud Native Threat Report

In practice, we observed five to 10 new attacks per month that we can confidently 
attribute to TeamTNT (Figure 11). In addition to providing a revenue stream through such 
practices as cryptojacking, these frequent attacks create a powerful feedback mechanism 
for the group to test, evaluate, and refine their tactics, techniques, and procedures.

Figure 11—The chaimera domain is known to be associated with TeamTNT.13 

Using APT-grade tricks

In August 2021, we detailed an intensive campaign by TeamTNT that uses advanced 
persistent threat (APT) techniques that usually are leveraged by nation-state threat 
actors14.  Each attack in this campaign followed a four-step process:

1 	 Running a vanilla container image: In this case, the attacker runs an Alpine 
	 container image. 

2 	 Escaping to the host: The attackers mount the host file system to escape the 
	 container and gain access to the host. 

3	 Downloading a malicious script: After escaping to the host, the attacker writes a 
	 command in the cron scheduler system to download and execute a malicious shell 

	 script (cronb.sh) from a remote source. 

4 	 Loading and executing the malware: The script cronb.sh is the payload, which 
	 executes the attack.

12 For example, see Threat Alert: TeamTNT Pwn Campaign Against Docker and K8s Environments [Aqua Security]
13 This attack is similar to one examined in depth by Palo Alto’s Unit 42. For more information, see TeamTNT Actively Enumerating Cloud 
Environments to Infiltrate Organizations [Palo Alto Networks]
14 See Advanced Persistent Threat Techniques Used in Container Attacks [Aqua Security]

https://www.aquasec.com/research/
https://blog.aquasec.com/teamtnt-campaign-against-docker-kubernetes-environment
https://unit42.paloaltonetworks.com/teamtnt-operations-cloud-environments/
https://unit42.paloaltonetworks.com/teamtnt-operations-cloud-environments/
https://blog.aquasec.com/advanced-persistent-threat-techniques-container-attacks


182022 Cloud Native Threat Report

Figure 12—The installdia 
function contains a tar 
file encrypted in base64, 
which is the source 
code of the Diamorphine 
rootkit. The attackers are 
also testing the system, 
trying to cover as many 
Linux distributions 
as they can (Ubuntu, 
Debian, Red Hat, Fedora 
or CentOS, etc.)

To hide their presence, the group employed two types of rootkits in this script:

	• A kernel space rootkit, Diamorphine, which is used to conceal the attack (Figure 12)

	• A technique that changes binaries, which is considered a user space rootkit and 
which serves as a fallback option (Figure 13)

Diamorphine is a loadable kernel module (LKM) rootkit for Linux kernels. It lives inside the 
kernel space and is designed to obtain higher privileges on processes and hide malicious 
activities. 

LKM-based rootkits are powerful, allowing attackers to do almost anything in the system, 
such as modifying a process behavior or even terminating a process before it starts. 
However, they’re challenging to use because attackers need root privileges or CAP_SYS_
MODULE capability to load them. The use of Diamorphine in this campaign shows a new 
level of sophistication.

https://www.aquasec.com/research/


192022 Cloud Native Threat Report

Figure 13—In the first row, the attackers try to verify that the user is 
“root” (Diamorphine will only run with the root user). If the verification 
fails, then the attackers deploy a user space rootkit by altering the 
programs top, ps, and pstree.

https://www.aquasec.com/research/


202022 Cloud Native Threat Report

The (un)retired

December introduced a new twist, when TeamTNT announced their retirement. 
Nevertheless, a month later, our honeypot was still being subjected to attacks from 
TeamTNT. Notably, though, we didn’t observe any new tactics, so it’s possible the ongoing 
attacks are the result of automated attack infrastructure that remains operational.

Further research showed that some of TeamTNT’s command-and-control servers, a third-
party registry, and a worm are still operational and infecting new targets. Is TeamTNT 
really retired or just taking a holiday? Only time will tell.

https://www.aquasec.com/research/
https://twitter.com/hildetnt


Aqua’s Team Nautilus focuses on cybersecurity research of the cloud native stack. Its mission 
is to uncover new vulnerabilities, threats and attacks that target containers, Kubernetes, 
serverless, and public cloud infrastructure — enabling new methods and tools to address them.

 Copyright ©2022 Aqua Security Software Ltd., All Rights Reserved

Conclusions
The data in this report clearly shows that, although attackers are becoming more sophisticated, 
they’re equally on the search for easy, broad targets—and Kubernetes is delivering such a target. 
Moreover, although veteran cloud native attackers like Team TNT are slowing down their activity, 
new attackers from the traditional security space are entering the cloud native space.

There’s no slowing down the migration to cloud native, either from the application development 
or the attackers’ perspective. So what can practitioners do? 

1 	 Ensure runtime security: The increased use of backdoors, worms, rootkits, and 
	 other sophisticated tactics clearly demonstrates that runtime security is a key 

	 component of any cloud native security strategy. This is equally the case as we 
	 see increases in supply-chain attacks that don’t rely on vulnerabilities although they 
	 can introduce them—in which the actual attacker behavior might manifest only in 
	 runtime. The timeline of Log4j, with attackers targeting honeypots within hours of a 
	 newly available exploit opportunity, also emphasizes the need for runtime protection.

2 	 To be effective Kubernetes security must be layered: Kubernetes security is a  
	 broad attack vector, and attackers are taking note. The targeting of Kubernetes 

	 specific elements, such as kubelets and API servers, and the exploitation of 
	 Kubernetes UI tools reinforce the need to secure Kubernetes environments both 
	 at the container and orchestrator level. This layered approach is the only way to  
	 cover all your bases in the event that an attacker has found a way in through the 
	 burgeoning Kubernetes ecosystem.

3 	 Implement scanning in development: Vulnerabilities like Log4j show us how 
	 critical scanning is in development, as well how critical it is to invest in tooling that 

	 allows practitioners to gain visibility across the entire cloud native stack.

https://www.youtube.com/channel/UCLstqAtOx2t0xy8YaYMjkWg
https://aquasec.com
https://twitter.com/AquaSecTeam
https://www.linkedin.com/company/aquasecteam
https://www.facebook.com/AquaSecTeam

	Introduction
	Key findings
	Methodology

	Observed attacks on 
	cloud native environments
	Adversaries adopt more sophisticated tactics, techniques, and procedures 
	Attention shifts from Docker to Kubernetes
	Traditional attack tactics are 
	targeting cloud environments
	Software supply-chain 
	exploitation continues to surge
	Christmas comes early for attackers, thanks to Log4j
	TeamTNT stays prolific, introduces new techniques, then retires (or did they?)

	Conclusions

